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Abstract 

A 2D axisymmetric unsteady flow model is to be developed and integrated with a 1D engine cycle simulation 
code. The model assumes inviscid flow and is supposed to be capable of accurate modelling of various manifold 
elements like bell-mouth entry or catalyst entry diffuser and exit effuser. Rapid runtime and ease of meshing are of 
absolute importance. A finite volume mesher was developed and is capable of rapid meshing of variable area ducts as 
well as of their external region. The 2D planar and 2D axisymmetric MacCormack solvers were constructed and 
tested in straight- and diverging pipe shock tube tests. A non-reflecting boundary condition was applied to the border 
of the computational domain in order to prevent wave reflections from this non-physical boundary. The shock-tube 
test results were compared against those from the quasi-1D MacCormack and first order HLLC solvers. The 
MacCormack method, used without flux limiter, was found to be too dispersive and unable to represent the reality at 
required precision level. Consequently it was decided to develop a brand new solver that will employ the modern and 
robust Hancock MUSCL scheme. 
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1. Introduction 
 

Today, 1D engine cycle and gas dynamics simulation codes are widely used tools in the design 
of piston combustion engines. They are characterized by an outstanding combination of rapid 
runtime and relatively high precision of results; thanks to the combination of a 1D gas dynamic 
model in the manifold and 0D solving approach to all other elements (cylinders, turbochargers, 
plenums, etc.). Typical applications of these codes include prediction of performance parameters, 
manifold tuning, valve and ignition timing optimization, turbocharger matching etc. These codes 
solve the so-called Euler equations - with modifications to account for the effects of pipe wall 
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friction, heat transfer, and pipe area variation - in order to obtain time-dependent state parameters 
of the unsteady gas flow throughout the manifold at defined engine speed and load conditions. 
These equations are a set of three conservation laws (continuity, momentum and energy equations) 
of inviscid flow. Though the codes take into account the phenomena of friction, heat transfer or 
even chemical reactions, they sometimes exhibit serious troubles when a user attempts to build a 
high-fidelity (from the point of view of geometry features) model of real manifold system. 
Features like bends, junctions, or plenums can be solved fairly well with one of the established 
methods [2]. On the other hand, tapered ducts (which are abundant features in engine manifold 
systems) are supposed to obey the quasi-1D formulation of equations stating that the flow always 
adheres to the walls and radial flow effects can be neglected. This is true for slight area variations 
(up to approximately 7-10°) and weak disturbances only; when the area variation is larger and/or 
flow velocity higher and/or discontinuities are present, this assumption is completely invalid and 
the calculation error may reach 40% [4]. At even greater area changes the code is likely to crash 
due to instability of employed numerical scheme [2]. In such a case the only way, in which the 
model is solvable, is to turn the gradual taper into sudden area change and apply an appropriate 
boundary condition. However, the boundary condition for a sudden area change is based on the 
simplified assumption of the flow fully separating the walls; and this is also not an accurate 
representation of the system. A remedy to the above-mentioned issues has been proposed by 
Corberan et. al. [1]. It is based on a modified interpretation of governing equations and modified 
meshing approach. When combined with classical two-step Lax-Wendroff method or TVD-class 
Roe-solver-based numerical scheme, it results in extremely stable technique able to successfully 
solve even very large taper angles while low runtime costs is maintained. However, this does not 
completely resolve the issue that the real flow will separate from the pipe walls, in which case the 
fluid velocity becomes decoupled from the pressure over part of the pipe cross-section. An 
alternative to Corberan’s approach is to rely on a link to a commercial 3D CFD package that 
solves the flow in the critical part. Though the results obtained can be very accurate if the coupling 
is properly performed, a major disadvantage of these coupled simulations lie in the significant 
increment of calculation runtime. Additionally, the users are required to be licensed for the use of 
the CFD software they may not need for anything else - this is likely to be economically unviable 
for many of the 1D code users. The ideal solution seems to be the integration of a multi-D gas flow 
sub-model into a 1D simulation code; such that the user can control the compromise in accuracy 
and runtime increase. Ideally, this sub-model would be based on a full 3D solver; this would, on 
the other hand, require a sophisticated mesh tool and skilled CFD simulation engineer. A 2D 
planar model is valid exactly only for rectangular cross sections as it assumes a unit width at all 
nodal points. Thus, the logical compromise is a 2D axisymmetric model. 
 
2. 2D axisymmetric flow model 
 

The symbolic vector equation governing 2D axisymmetric gas flow can be written as [3,4] 
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where state vector, flow vectors, and ‘radial’ vectors are given by 
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Note that in this form the equation neglects the friction, heat transfer and chemical reactions; but 
the extension to such a form is straightforward. This is a typical set of hyperbolic first-order partial 
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differential equations and can be solved by any of classical or more modern shock-capturing 
numerical schemes. 

While finite difference discretization defines the calculation points, the finite volume 
discretization defines the borders of the control volume (calculation cell) and is therefore 
independent of cell geometry. Thus, the requirement of ease of meshing and extensibility to more 
complex features is better satisfied by FVM discretization. The mesh generation code was 
programmed in the Fortran 95 programming language and is capable of meshing the interior and 
exterior of a given variable-cross section duct. The exterior around the pipe exit/entry is to be 
meshed and solved in order to correctly capture the end effect (i.e. wave reflection slightly beyond 
the exit rather than directly at the end of the duct). The dimensions of meshed external region 
(green, turquoise and violet mesh) can be seen in the Fig. 1. 

 
 
 
 
 
 
 
 
 
 

Fig. 1: The example of computational mesh of a variable cross-section duct 
 

Along with the mesh generator, the cell-centred FVM solver utilizing the well-known 
MacCormack predictor-corrector method was programmed. This method is summarised as [3]: 
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The MacCormack scheme was not actually expected to fulfil the stability and precision 
requirements as, being a linear scheme of second-order accuracy, it does not satisfy the TVD 
criterion. At this early stage of the code development it was employed mainly for its simplicity and 
ease of programming such that quick comparisons of 2D planar and 2D axisymmetrical 
approaches could be made, together with verification of various combinations of boundary 
conditions. These analyses, as well as the overall behaviour of the model were studied with a 
standard constant area shock-tube test (Sod’s problem) as well as a non-standard variable cross-
section shock-tube test, similar to the de Haller test. Actually, the codes were tested for shock-tube 
and de Haller behaviour with converging and diverging tubes and a convergent-divergent nozzle, 
but due to limited space only the former two tests are presented here. 

Along with solving equation (2), the solver works with boundary conditions (BCs).  A simple 
no-slip (u=v=0) BC was applied to solid walls of the pipe. The “inlet” BC (left end of the pipe) 
was defined by a prescribed value of pressure, p=p2. The centreline BC suppresses the radial 
velocity (v=0) while maintaining the value of the axial velocity u. Simple “outlet” BC prescribing 
the value of pressure p1 causes waves to reflect at the border of the computational domain. These 
reflections distort the calculation, as the domain boundary is only virtual and does not exist in 
reality. To address this issue a non-reflecting boundary condition (NRBC), based on the simple 
mirror image assumption of the ghost cell [5], was introduced. The domain boundary treated with 
this kind of boundary condition absorbs waves well and eliminates distortions of this type from the 
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calculation. The relationship between the last internal cell, P, and the ghost cell, Q, for a simple 

NRBC is given by . 
nn WW QP =

 
 
 
 
 
 
 
 

Fig. 2: Dimensions of tubes for Sod’s problem: straight pipe on the left and variable cross-section pipe on the right 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Non-reflecting BC - mirror image assumption (left) and boundary conditions applied to tested tube 
(right) 

 
Straight- and diverging pipe shock-tube tests were performed with both 2D planar and 2D 

axisymmetric MacCormack solvers. The initial conditions of the test were: p1=100 kPa, p2=130 
kPa, T1=T2=300K and u1=v1=u2=v2=0. The dimensions of the pipes and the initial position of the 
shock are shown in the Fig. 2. The straight pipe was divided into 200 axial and 40 radial meshes 
(30 in the axisymmetric case); the variable cross-section pipe was meshed into 200 axial and 30 
radial meshes (in both planar and axisymmetric case). 

 
3. Test results 
 

It should be noted that in the case of straight pipe the external regions were meshed at both 
pipe ends (Figs. 4 and 5; the pipe geometry is outlined by black lines) and that NRBC was applied 
to the border of the computational domain in order to prevent wave reflections and calculation 
distortion. When solving the Sod’s problem in the straight pipe using 2D planar approach, the 
MacCormack solver crashed after approx. 12.8 ms of runtime due to numerical overshoots in the 
vicinity of the sudden area change (pipe end – outflow region interface). Small dark blue spot can 
be observed at the right end of the pipe in Fig. 4: this marks the location with very low value of 
calculated pressure that leads to a zero and, eventually, a negative value of density – and this 
causes the code to crash. The red spot, i.e. high-pressure region, just next to low-pressure region, 
gives a further indication of a physically impossible situation. 
Using the 2D axisymmetric approach, the MacCormack solver crashed after approx. 3.75 ms of 
runtime again due to numerical overshoots in the vicinity of the sudden area change. Non-physical 
oscillations of pressure (red and orange stripes) can be seen at the left end of the pipe in Fig. 5. As 
well, dark blue spots in the upper section of the left pipe’s end mark the locations with very low 
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value of calculated pressure that leads to zero and eventually negative values of density and causes 
the code to crash. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Density contours in the straight-pipe shock tube test after 12.8 ms, 2D planar case 

 
 

 
 
 
 
 
 

Fig. 5: Pressure contours in the straight-pipe shock-tube test after 3.75 ms, 2D axisymmetric case 
 
The “bell-mouth entry shock-tube test” was performed with variable cross-section pipe (Fig. 2 
right) with meshed external region on the right hand side. The initial conditions were as above. In 
Fig. 6 one can observe nice patterns of flow separation (orange and yellow-to-green stripes along 
the tapered section of the duct) as well as the absorbance of incident wave by the NRBC of the 
computational domain. However, the tiny small blue spot right at the transition of the straight pipe 
into a taper is of the main interest in this figure. It marks the location with low density that in the 
very next time step falls below zero and causes the code to crash (after approx. 4.25 ms). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Density contours in and around bell-mouth entry after 4.25 ms, 2D planar case 
 
Fig. 7 presents pressure contours in the bell-mouth entry solved as a 2D axisymmetric case for 
approximately 2.9 ms. A strange pressure pattern in the bottom right corner can be seen (zoomed 
in dotted region) - these numerical oscillations eventually grow up to such an extent that they 
cause the code to crash due to a negative value of calculated density. This kind of oscillation is 
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believed to be a result of a combination of centreline B.C. and mirror-image-based NRBC. 
However, this particular case crashed due to negative density calculated at the area change in the 
middle of pipe (small blue dot). Approximately 30 different geometries of variable area ducts were 
tested at equal initial conditions while different combinations of boundary conditions were applied 
to the centreline and domain border. It has been found that, in general, calculations of bell-mouth 
entries with larger taper angles tend to crash due to negative density at the area change inside the 
pipe while calculations of slimmer “trumpets” crash due to oscillations along centreline arising 
from the NRBC in the bottom right corner. However, this general rule varies with mesh size. The 
size of the meshed external region around the pipe exit/entry played no role in the development of 
this kind of oscillations. 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Pressure contours in and around bell-mouth entry after 2.9ms 
 
It should be noted that similar situation was observed when certain combinations of shock 
strength, boundary conditions, mesh size and external region size were applied to the 2D 
axisymmetric straight pipe shock-tube test. Fig. 8 shows an example of 2D axisymmetric straight 
pipe shock tube test with NRBC applied to both its ends – the oscillations start to develop at 
approx. 8 ms in the left portion of the pipe, continue to grow up and cause the calculation to crash 
after 13 ms. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Pressure contours in the straight pipe shock tube test after 11ms 
 

When comparing straight-pipe shock-tube test results provided by 2D planar and 2D axisymmetric 
MacCormack solvers with those obtained through quasi-1D MacCormack and 1st order HLLC 
solvers, shown in Fig. 9a, it can be seen that though both 2D planar and 2D axisymmetric solvers 
predict the shock position relatively well, they produce numerical overshoots of notable similarity. 
However, after a certain runtime value is reached, the calculated pressure traces differ more and 
more: as the 2D planar approach is somewhat more stable, it gives slightly smoother curves, 
whereas the 2D axisymmetric approach suffers from spurious oscillation from early runtimes. 
When a diverging pipe (uniform diameter change from 200mm to 400mm on 1m of length) was 
subjected to the above-described shock-tube test, the results were found to be somewhat similar to 
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those from straight pipe, as far as the overall form of the curves is considered, Fig. 9b. Naturally, 
the results from 1D and 2D approaches differ more.  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 

Fig. 9: Centreline pressure traces in a) straight- and b) diverging pipe shock-tube test. 

 
3. Conclusion 
 

The MacCormack method was found to be too dispersive and unstable to be usable in the 2D 
axisymmetric flow submodel. The application of a flux limiter to the above-described combination 
of the flow model and numerical method would significantly improve the predictions but it is 
thought the development of a brand new solver based on a more recent numerical technique is 
preferable. This will employ a modern robust numerical method, namely the Hancock MUSCL 
scheme, which provides high-resolution oscillation-free results whilst the runtime cost increment 
is insignificant. Another conclusion to be drawn is that the non-reflecting (absorbing) boundary 
condition, even in its simplest form of mirror-image ghost cell, performs much better than ordinary 
outlet BC that assigns a value of pressure to particular cell boundary. The incident waves are 
absorbed by NRBC rather than being reflected back straightaway; the reality is modelled in more 
accurate way. However, certain attention is to be paid to specific combination of boundary 
conditions in order to prevent distorted results as described above.  
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Nomenclature 
e0 - total stagnation internal energy, F - flux vector, FVM - finite volume method, G - flux vector, 
h0 - total stagnation enthalpy, HLLC - Harten - Lax - van Leer contact wave solver, MUSCL - 
monotonic upwind scheme for conservation laws, p - pressure, R - radial term or pipe radius, TVD 
- total variation diminishing, u - axial velocity, v - radial velocity, W - state vector, yCG - radial 
coordinate of gravity centre, ρ – density 
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